
Tackling Component Interoperability in Quantum Chemistry Software
Fang Peng

Scalable Computing Laboratory
Ames Laboratory, US DOE

fangp@scl.ameslab.gov

Jonathan Bentz
Cray Inc.

1340 mendota Heights Rd.
Mendota Heights, MN, USA

jnbntz@cray.com

Meng-Shiou Wu
Scalable Computing Laboratory

Ames Laboratory, US DOE
mswu@scl.ameslab.gov

Mark S. Gordon

The Department of Chemistry
and Scalable Computing

Laboratory, Ames Laboratory,
US DOE

mark@si.fi.ameslab.gov

Masha Sosonkina
Scalable Computing Laboratory

Ames Laboratory, US DOE
masha@scl.ameslab.gov

Joseph P. Kenny

Sandia National Laboratories
Livermore, CA, USA
jpkenny@sandia.gov

Theresa Windus
The Department of Chemistry
Iowa State University, USA

theresa@fi.ameslab.gov

Curtis Janssen
Sandia National Laboratories

Livermore, CA, USA
cljanss@sandia.gov

Abstract
The Common Component Architecture (CCA) offers an
environment that allows scientific packages to dynamically
interact with each other through components.
Conceptually, a computation can be constructed with plug-
and-play components from any componentized scientific
package; however, providing such plug-and-play
components from scientific packages requires more than
componentizing functions/subroutines of interest,
especially for large-scale scientific packages with a long
development history. In this paper, we present our efforts
to construct components for the integral evaluation - a
fundamental sub-problem of quantum chemistry
computations - that conform to the CCA specification. The
goal is to enable fine-grained interoperability between three
quantum chemistry packages, GAMESS, NWChem, and
MPQC, via CCA integral components. The structures of
these packages are quite different and require different
approaches to construct and exploit CCA components. We
focus on one of the three packages, GAMESS, delineating
the structure of the integral computation in GAMESS,
followed by our approaches to its component development.
Then we use GAMESS as the driver to interoperate with
integral components from another package, MPQC, and
discuss the possible solutions for interoperability problems
along with preliminary results.
Categories and Subject Descriptors D.2.13 [Software]:
Software Engineering – reusable software
General Terms Measurement, Performance, Design.
Keywords components, integral, interoperability, quantum
chemistry

1. Introduction
The advance of component technologies in high
performance computing offers an opportunity for scientific

packages to dynamically interact with each other without
manually dumping files, converting data formats or
painstakingly coupling codes on a case-by-case basis. With
the Common Component Architecture (CCA) [1, 2],
scientists are able to construct new computations or
improve the performance of their software by using
components provided by other research groups through
well-defined interfaces. This potential of interoperability
encourages application scientists from different scientific
domains to explore mechanisms to couple existing
packages that offer different computing capabilities.

The standards of CCA are defined by the CCA Forum [2],
a group of scientists from different national laboratories
and academic institutes who are researchers in the high
performance computing community. The language
interoperability of CCA is enabled by Babel [3], a tool for
solving the interoperability of components that are
implemented in different programming languages such as
FORTRAN, C, C++, Python, and Java. Babel relies on the
Scientific Interface Definition Language (SIDL) for
defining interfaces for scientific components.

Quantum chemistry is one of the scientific disciplines that
are actively involved in exploring the interoperability
capability offered by CCA. The complexity in quantum
chemistry computations results in a large number of
noncommercial packages developed by research
laboratories and universities (The General Atomic and
Molecular Electronic Structure System - GAMESS [4],
Massively Parallel Quantum Chemistry - MPQC [5], and
NWChem [6] are three major quantum chemistry packages
from DOE and DOD), each with unique capabilities and
deficiencies. The development of a new method usually
requires doctoral level researchers and is very time-
consuming; it is thus an important task to integrate
capabilities of different packages to enable new
computations that are not possible with any single package.

While CCA offers an environment for scientific packages
to interact with each other, a package must be
componentized before it is able to provide/use components
to/from other packages. With the long development history

Copyright 2007 Association for Computing Machinery. ACM acknowledges that
this contribution was authored or co-authored by an employee, contractor or
affiliate of the U.S. Government. As such, the Government retains a nonexclusive,
royalty-free right to publish or reproduce this article, or to allow others to do so,
for Government purposes only.
HPC-GECO/CompFrame’07 October 21–22, 2007, Montréal, Québec, Canada.
Copyright © 2007 ACM 978-1-59593-867-1/07/0010…$5.00.

of quantum chemistry packages, efforts for their
componentization cannot be accomplished by any single
research group. Scientists must join together to define a set
of standardized interfaces and data structures for
computations of interest, and then packages can be
componentized accordingly.

Even with the standardized interfaces defined,
componentizing a package with a long development history
poses a big challenge, which must be conquered before
enabling interoperability between packages. While
componentizing quantum chemistry packages on a coarse-
grain level was conducted in previous studies [7, 8],
another important and useful approach for the quantum
chemistry community is to componentize low-level
computations such as molecular integral evaluations.

In this paper we detail the process of componentizing the
integral computation in GAMESS, with discussion of the
difficulties we encountered and preliminary results. With
the initial interoperability accomplished, two future
research avenues open up: constructing more complex
computations and Computational Quality of Service
(CQoS) [9] in quantum chemistry.

2. Integral Computation in Quantum Chemistry
The calculation of one-electron integrals (1- or 2-center
integrals, where a center refers to a specific atom in a
molecule) and two-electron integrals (1-, 2-, 3-, or 4-center
integrals) is the basis of constructing the Fock matrix in
any quantum chemistry package that uses the Self-
Consistent Field (SCF) method. The one- and two-electron
integrals in the atomic basis [10] are given in Eqs. (1) and
(2), respectively:

() () () ()∫ ∑∫ −
+⎟

⎠
⎞

⎜
⎝
⎛ ∇−=

a a

a dr
rR

Zdrh 1
1

1
2 1

||
11

2
11|| βαβαβα χχχχχχ (1)

() () () ()∫ −
= 21

21

21121|| drdr
rr

g δβγαδβγα χχχχχχχχ (2)

where χ is a basis function (or Atomic Orbital, or AO); α
,β, γ, and δ are the indexes of the basis functions; h is the
one-electron operator and g is the two-electron operator.
The basis function is a linear combination of primitive
Gaussians, all of the same type and all on the same nucleus,
but with different exponents:

 ∑ −=
k

rnml
k

kezyxd
2δ

ααχ (3)

where k is the index of the primitive Gaussians, dka is a
contraction coefficient, kδ is the exponent, x, y, z are the

Cartesian coordinates of the nucleus, and 2222 zyxr ++= .
The angular momentum of the shell type (S, P, D, F, G, …)
is given by l + m + n. For example, when l + m + n = 0, we
get an S-type basis function,

 ∑ −=
k

r
k

ked
2δ

ααχ (4)

and when l + m + n = 1, we have 3 types of different basis
functions,

 ∑ −=
k

r
k

kxed
2δ

ααχ (5)

 ∑ −=
k

r
k

kyed
2δ

ααχ (6)

 ∑ −=
k

r
k

kzed
2δ

ααχ (7)

where the formulas (5), (6) and (7) correspond to the Px, Py
and Pz basis functions, respectively

In practice, integrals are calculated in batches, where a
batch is a collection of integrals having the same exponent
[10] (in this paper, we use the term Gaussian shell or shell
to represent a set of basis functions with the same
exponent). For example, a <pp|pp> type batch has 81
individual integrals, where the basis function for a P-type
shell has 3 types (3*3*3*3 = 81). We usually call a batch
of one-electron integrals a shell doublet and a batch of two-
electron integrals a shell quartet.

In short, to compute the one- and two-electron integrals, we
need the one-electron operator, the two-electron operator,
the basis set information and the coordinates of the atoms
in the molecule (geometry). Different packages may use
different techniques and can handle different sets of basis
functions to calculate integrals.

2.1 Integral Computation in GAMESS
GAMESS is an ab initio program that is written mostly in
FORTRAN 77, with a small portion designed in C. Using
FORTRAN 77 to develop GAMESS was the best choice
when the project started, and has enabled GAMESS to run
on any platform. However, it also made the
componentization of GAMESS a challenging task as no
object-oriented concepts have been used in designing
GAMESS. The development of the basic GAMESS CCA
architecture was described in our previous work [8].

Global information in GAMESS, such as the program
configuration, the basis set information and molecule
coordinates, is stored as common blocks to be shared
between subroutines. For some computations, intermediate
data are stored as disk files to be used iteratively. The
approach that GAMESS uses to handle global information
complicates the componentizing process since we cannot
simply pass pointers to global information between
subroutines as in other object-oriented or modularized
programs.

GAMESS computes two kinds of AO integrals, one- and
two-electron integrals. For two-electron integrals,

GAMESS provides four computational methods, each of
which has its strength for computing different sets of shell
types. By default GAMESS chooses the most efficient one
by picking the best method for each shell quartet. However,
users can choose a specific integral code through the input
options.

2.2 Integral Computation in MPQC and NWChem
The Massively Parallel Quantum Chemistry Program
(MPQC), written in the C++ programming language,
computes properties of atoms and molecules from first
principles. MPQC has been designed as a massively
parallel program from the beginning, and it can run on a
wide range of platforms, from UNIX workstations,
symmetric multi-processors, to massively parallel
architectures.

The class libraries underlying the MPQC program are
written in C++ using an object-oriented design. Following
a class hierarchy very similar to the CCA integral
interfaces [12], the integral packages are encapsulated by
integral evaluator and integral factory interfaces described
within the MPQC documentation [11]. This encapsulation
insures a clean separation of the integrals code which
greatly simplified packaging the integral packages within
MPQC as stand-alone components.

NWChem is a quantum chemistry package that is written in
FORTRAN 77. It uses an object-oriented design and
programming approach to facilitate functionality reuse and
hide internal data. One example of this is the integral
abstract programming interface (API) of NWChem. The
API exposes only specific aspects of the integral
computation to the programmer and hides many of the
details with regard to which integral programs are used
(there are currently four different algorithms within
NWChem) and how the computations are done. This API
has initialization routines that require the geometry and the
basis set as well as a termination routine that cleans up and
terminates the integral computations. There is a set of
routines based on the type of integrals to be computed
(energy, first or second derivative). In addition, the API
allows the programmer to select the accuracy (or the
threshold for radial cutoffs) for the integrals. Once the API
has been initialized there are specific routines to tell the
programmer how much memory is needed for the buffers
required by the API and then to call each of the different
types of integrals that are available. This architecture
allows any improvements or new integral routines to be
automatically realized throughout the whole of NWChem.

NWChem also has basis set objects and geometry objects
that must be properly populated so that the integral
computations work. The population of these objects is
usually initiated through an input file although they can

also be created through functions associated with the
objects. This is particularly useful in the context of CCA.

3. Development of Integral Components
3.1 Integral Evaluation Interfaces
The SIDL interfaces for integral evaluation are available in
the cca-chem-generic package [12]. The cca-chem-generic
package defines several chemistry interfaces that each
chemistry package can implement to create chemistry
components and classes. In the design of those chemistry
interfaces, the interface for a “component” usually ends
with “FactoryInterface” and acts as a driver to return
references to some classes, while a “class” usually provides
real computations. The implementation of a component is
only different from the implementation of a class in that a
component also needs to implement the
gov.cca.Component and gov.cca.Port interfaces.

The cca-chem-generic package provides the
implementation of several useful components and classes
that are needed by most computations. For example, the
Chemistry.MoleculeFactory component would create and
return a Chemistry.Molecule class that provides the
information of atomic and molecular coordinates for all
packages to use.

Among the chemistry interfaces defined by the cca-chem-
generic package there are four core interfaces for integral
computations: IntegralEvaluator1Interface for 1-center
integrals, IntegralEvaluator2Interface for 2-center
integrals, IntegralEvaluator3Interface for 3-center integrals
and IntegralEvaluator4Interface for 4-center integrals. We
call any classes that implement the above interfaces
integral evaluators. Another core interface is
IntegralEvaluatorFactoryInterface, which serves as a
driver that returns references to the integral evaluators. An
integral evaluator factory that implements

NWChem GAMESS MPQC

integral
evaluator1

IntegralEvaluatorFactoryInterface

integral evaluator factory

integral
evaluator2

integral
evaluator3

integral
evaluator4

component

CCA interface

class

Chemistry Package

Integral
Evaluator1
Interface

Integral
Evaluator2
Interface

Integral
Evaluator3
Interface

Integral
Evaluator4
Interface

Figure 1. Each chemistry package can implement the
IntegralEvaluatorFactoryInterface to provide an integral
evaluator factory component and implement one or more of
IntegralEvaluatorNInterface (N=1, 2, 3 and 4) to provide the
integral evaluatorN classes. The integral evaluator factory
component is a driver component to return the references to
integral evaluators for integral computations.

IntegralEvaluatorFactoryInterface usually also extends the
gov.cca.Component and gov.cca.Port interfaces and is used
to provide integral evaluators for each chemistry package.
Figure 1 shows the relationship among those five core
integral interfaces and the three chemistry packages.

The integral evaluator interface provides a compute method
for integral computation for a shell multiplet. For example,
the compute method of IntegralEvaluator2Interface is for
computing a shell doublet, which is illustrated below,

/** Compute a shell doublet of integrals.

@param shellnum1 Gaussian shell number 1.

@param shellnum2 Gaussian shell number 2. */

void compute(in long shellnum1, in long

shellnum2);

where two indexes of Gaussian shells are passed as
parameters and the resulting integrals are stored in a buffer.
Similarly, the compute method of
IntegralEvaluator4Interface needs four indexes of
Gaussian shells as parameters to compute integrals for a
shell quartet.

Several auxiliary interfaces are also important to the
initialization of integral evaluators:
CompositeIntegralDescrInterface, MoleculeInterface,
MolecularInterface, AtomicInterface and ShellInterface.
Through these interfaces, the information required for
computing integrals can be passed from one package to
another package without initializing every package. Figure
2 shows an example of how molecule coordinates and the
basis set are stored in CCA integral objects. The cca-chem-
generic package provides implementations for
CompositeIntegralDescrInterface and MoleculeInterface
that will be used directly in our experiments. Detailed
information about the integral evaluation interfaces is
described in Kenny et al. [12].

3.2 The Componentizing Approach for GAMESS
In general, the first step of componentizing a package is to
create the SIDL interfaces. In our case, we need to extend
the pre-defined chemistry interfaces in the cca-chem-
generic package. Next, the implementation files of the
specified programming languages (C, C++, f77, f90,
python, or java) are generated based on those interfaces by
using Babel, the language interoperability tool. The auto-
generated implementation files are initially empty; they
include only function headers and comments. Programmers
need to insert implementation codes into each
implementation file with the specified programming
language; in our case C++.

To componentize a large-scale FORTAN 77 based code
such as GAMESS, wrapper functions are necessary as a
bridge between CCA interfaces and the native GAMESS
code. Since there is no object-oriented design in the

GAMESS code, it is difficult for the implementation of
GAMESS CCA components to utilize GAMESS
subroutines directly. The use of wrapper functions divides
GAMESS subroutines into smaller and less interleaving
functions and therefore makes the componentization
possible.

The Execution Sequence of GAMESS. To understand the
design of GAMESS wrapper functions, we need to know
the execution sequence of GAMESS and how the
corresponding wrapper functions are created. First, the
version information and the Distributed Data Interface
(DDI) [13] are initialized. GAMESS uses DDI as its
parallel communication mechanism, which mainly relies on
TCP/IP sockets for communication, and can also utilize
available communication libraries such as MPI or LAPI.
The wrapper function gamess_start is created for wrapping
the initialization steps of GAMESS. Second, molecule
coordinates, basis sets and other user input options are read
from an input file and the corresponding common blocks
are initialized based on those inputs. The wrapper function

Molecular

Atomic0: O

Atomic1: H

Atomic2: H

Shell0: S (primitive 1, 2, 3)

Shell1: L (primitive 4, 5, 6)

Shell0: S (primitive 7, 8, 9)

Shell0: S (primitive 10, 11, 12)

Molecule (x, y, z coordinates)

SHELL TYPE PRIMITIVE EXPONENT CONTRACTION COEFFICIENT(S)
O

1 S 1 130.7093214 0.154328967295
1 S 2 23.8088661 0.535328142282
1 S 3 6.4436083 0.444634542185
2 L 4 5.0331513 -0.099967229187 0.155916274999
2 L 5 1.1695961 0.399512826089 0.607683718598
2 L 6 0.3803890 0.700115468880 0.391957393099

H
3 S 7 3.4252509 0.154328967295
3 S 8 0.6239137 0.535328142282
3 S 9 0.1688554 0.444634542185

H
4 S 10 3.4252509 0.154328967295
4 S 11 0.6239137 0.535328142282
4 S 12 0.1688554 0.444634542185

ATOM ATOMIC COORDINATES (BOHR)
CHARGE X Y Z

O 8.0 0.0000000000 0.0000000000 0.1239321808
H 1.0 1.4305200000 0.0000000000 -0.9834468192
H 1.0 -1.4305200000 0.0000000000 -0.9834468192

Figure 2. When using the water molecule and the “STO-3G”
basis set as inputs, the information of molecule coordinates and
the molecular basis sets in the GAMESS program is shown in the
upper table. The upper block of the table shows the X, Y, Z
coordinates of the water molecule. The bottom block of the table
contains several columns. The information shown in the order
from left to right is: the atomic symbols, the index of Gaussian
shells, the Gaussian shell types, the primitive Gaussian shells, the
exponents and contraction coefficients. Following each atom
symbol is a block of Gaussian shells associated with it. The
corresponding CCA integral components that store the same
information are shown in the lower graph. The molecule
coordinates are stored in a Molecule object (implements
MoleculeInterface). The basis set information is stored in three
Atomic (implements AtomicInterface) objects with the references
to the corresponding Shell (implements ShellInterface) objects. A
Molecular (implements MolecularInterface) object contains the
references to the Molecule object and three Atomic objects.

gamess_read_input is generated for this step. Next,
depending on the type of computation, the execution
follows different branches, such as energy, gradient,
Hessian, optimize, or saddle point. Several wrapper
functions are generated for those computations, such as
gamess_get_energy, gamess_get_gradient and
gamess_get_hessian. This list can be expanded by creating
a wrapper function for each computation type. Finally, the
control returns to the main program for finalizing
computations and the communication layer. The wrapper
function gamess_end is created for the finalization step.

GAMESS Integral Wrapper Functions. For ease of
presentation, we omit details of data structures and
functions used in integral computations, but list only the
driver subroutines for one- (1-center) and two-electron (4-
center) integral calculations in the GAMESS code and the
corresponding wrapper functions in Table 1. The procedure
of creating wrapper functions for one- and two-electron
integral calculations are similar and we only present the
approach of wrapping two-electron integral calculations.

The subroutine JANDK (Table 1) is the main driver for
computing two-electron integrals. It first allocates memory
for integral buffers and initializes integral calculations.
TWOEI is then called for calculating two-electron integrals
over four basis functions. However, the cca-chem-generic
package defines the compute method of
IntegralEvaluator4Interface to return integrals for only one
shell quartet. In order to create a wrapper function that
computes only one shell quartet while making minimum
modification to the original GAMESS subroutine, the
initialization, finalization, and computation steps are
separated into three wrapper functions.

Combining the initialization steps in JANDK and TWOEI
(Figure 3), a wrapper function is used for initializing two-
electron integrals. The computation code in TWOEI is
wrapped into a function that calculates integrals for one
shell quartet with variables (ii,jj,kk,ll) in the loops as
parameters. The wrapper functions are invoked by the
GAMESS.IntegralEvaluator4 (implements
IntegralEvaluator4Interface) class. Finally, a wrapper

function is created for finalization of two-electron integral
calculations.

The reason we separate initialization steps from the
computation steps is to reduce the overhead of the wrapper
functions. The wrapper functions are designed to compute
integrals for a shell doublet or a shell quartet, so they can
be called ()2NO times for one-electron integral calculation
and ()4NO times for two-electron integral calculation.
Without separating the initialization step from computation
steps, there would be a significant amount of overhead for
computing integrals.

3.3 The Design of GAMESS CCA Integral
Components

The implementation of GAMESS CCA integral
components is straightforward as long as the integral
wrapper functions have been constructed in a way that can
be used by the CCA interfaces. The
GAMESS.IntegralEvaluatorFactory component
implements IntegralEvaluatorFactoryInterface, and is able
to return the GAMESS.IntegralEvaluator2 and
GAMESS.IntegralEvaluator4 classes for GAMESS integral
computations (Figure 1). The compute method of the
GAMESS.IntegralEvaluator2 class invokes the wrapper
function gamess_dblet_integral for computing a shell
doublet and the GAMESS.IntegralEvaluator4 class calls the
wrapper function gamess_twoei_compute for calculating a
shell quartet. Through the
IntegralEvaluatorFactoryInterface Uses/Provides port, the
functionality of the integral calculation can be shared
between GAMESS and other chemistry packages.

The Structure of GAMESS CCA Components.
GAMESS stores basis set and molecule coordinates in
common blocks, through which the values required for

Table 1. The subroutines for computing integrals
Computation Subroutine Description

ONEEI
the driver subroutine for the
one-electron integral
calculation GAMESS

HSANDT calculate integrals over all
shell doublets

gamess_1e_initialize initialize the one-electron
integral calculation

gamess_dblet_integral compute integrals for a shell
doublet

one-electron
integral

computation
GAMESS
Wrapper
Functions

gamess_1e_finalize finalize the one-electron
integral calculation

JANDK the driver subroutine for two-
electron calculation GAMESS

TWOEI calculate integrals over all
shell quartets

gamess_twoei_initialize initialize the two-electron
integral calculation

gamess_twoei_compute compute integrals for a shell
quartet

two-electron
integral

computation GAMESS
Wrapper
Functions

gamess_twoei_finalize finalize the two-integral
calculation

JANDK: Initialization … Calculating two-electron integrals … Other calculations

TWOEI: Initialization … Loop over (ii, jj, kk, ll) primitives … Finalization

Call for two-electron
integral calculation

gamess_twoei_initialize gamess_twoei_compute

Set ii, jj, kk, ll as parameters,
only compute integrals for
one shell quartet

gamess_twoei_finalize

Figure 3. The componentization of two-electron integral
calculations in GAMESS.

integral computation - the indexes of Gaussian shells,
exponents, contraction coefficients, and Cartesian
coordinates - are shared among different subroutines, and
integral calculations can be performed. The GAMESS
program initializes common blocks, memory, and
communications by reading the user input options from an
input file. The input file is read for many subroutines
during a computation; without this file there is no way
GAMESS can be initialized and perform computations.
Even though the GAMESS components we developed are
based on the interface for a “theoretically independent”
component, the underlying wrapper function depends on
the original design for initializing the GAMESS
computations.
To deal with the common “input file” issue, our approach
is to have the GAMESS.ModelFactory component
(implements ModelFactoryInterface) create a disk file with
the format of the GAMESS input file, based on the user
options that are passed from the CCA parameters. This disk
file will be passed to the GAMESS wrapper function
gamess_start to initialize GAMESS computations. Figure 4
shows the dependencies among GAMESS CCA
components, GAMESS wrapper functions and the
GAMESS program. GAMESS CCA components are built
on top of GAMESS wrapper functions, which wrap the
functionalities of GAMESS into non-interleaving
functions. To construct an application of GAMESS CCA
integral computations, a GAMESS.ModelFactory
component and a GAMESS.IntegralEvaluatorFactory
component (implements
IntegralEvaluatorFactoryInterface) are instantiated in a
CCAFFEINE framework. This framework is middleware
implementing a CCA model [14]. The
GAMESS.ModelFactory component reads user input
options from CCA parameters, creates a GAMESS input
file on disk based on those input options and calls the
wrapper function gamess_start to read the input file and
initialize GAMESS common blocks and communications.
The GAMESS.ModelFactory component also provides a
GAMESS.Model class (implements ModelInterface) for
calculating the energy, gradient and Hessian. After
GAMESS computations are initialized successfully, the
GAMESS.IntegralEvaluatorFactory component is able to
provide the GAMESS.IntegralEvaluator2 class
(implements IntegralEvaluator2Interface) and the
GAMESS.IntegralEvaluator4 class (implements
IntegralEvaluator4Interface) for integral computations.

The drawback of this approach is that GAMESS CCA
applications are tightly coupled with the
GAMESS.ModelFactory component to initialize GAMESS
computations. While it is possible to change common block
structures in the original GAMESS codes to get
initialization information through a ModelFactory
component from another package, we may be risking the

robustness of GAMESS as information in these common
blocks may also be used by many other computations
(developed by developers a long time ago). Thus, for
robustness reasons, we decided to use a less flexible
approach.

3.4 MPQC Integral Components
MPQC components are derived in a straightforward
manner from the class libraries underlying the MPQC
package. For example, the IntegralEvaluator4 CCA object
simply wraps a class derived from sc::TwoBodyInt. On the
client side, CCA integral factories are wrapped by the
sc::IntegralCCA class and CCA evaluators, such as
IntegralEvaluator4, are wrapped by the appropriate
evaluator class, such as sc::TwoBodyIntCCA. Thus, MPQC
has no code that directly uses CCA integral interfaces, with
all function calls to CCA objects occurring through a
wrapper object implementing an abstract interface. There
are two integral evaluator factories available within MPQC,
IntV3EvaluatorFactory and CintsEvaluatorFactory,
providing access to the native IntV3 integral package and
the Libint package [15]. Details about the design of MPQC
integral components are described in a previous publication
[16].

3.5 NWChem Integral Components
As with the GAMESS code, the NWChem component
software essentially consists of wrappers to access the
capabilities of the NWChem integral API. Currently, the
NWChem.ModelFactory needs to be created and initialized
so that NWChem has the proper information concerning
the basis sets and the molecular configuration. It is
anticipated that this will change in the future. Once the
Model Factory has created a Model, then NWChem has
also initiated its other functionalities such as memory
management (global array allocation), communication

GAMESS Wrapper Functions

The GAMESS Program

GAMESS
ModelFactory

ModelFactory
Interface

IntegralEvaluatorFactoryInterface

User input options

Input file

CCAFFEINE Framework

Create an
input file

Read
input file

CCA
Interface

Component

ModelInterface

GAMESS
Model Class

GAMESS
IntegralEvaluatorFactory

IntegralEvaluator2
Interface

IntegralEvaluator4
Interface

GAMESS
IntegralEvaluator2

GAMESS
IntegralEvaluator4

Figure 4. GAMESS CCA components are built on top of
GAMESS wrapper functions.

protocols and run-time database management. This is
currently essential for the integral components to function
properly.

A significant portion of the CCA integral interface is
similar to the NWChem API and there is a fairly direct
one-to-one mapping. However, the IntegralDescrInterface
is significantly different with no analog in NWChem, so
the specifics of the types of computations that the API is to
perform are kept in the components and translated to the
appropriate API calls.

The integral termination is straightforward. However, the
appropriate Model also needs to be terminated to end all of
the NWChem processes. Since NWChem CCA
components are currently being upgraded from working
with the older version of Babel tools and the CCAFFEINE
framework to working with the newest version of those
packages, the integration of GAMESS and NWChem will
be part of our future work.

3.6 Interoperability between GAMESS and MPQC
To test interoperability between packages, we pass the
basis set information, the type of integrals, and molecule
coordinates from a GAMESS model factory component to
a MPQC integral evaluator factory component by invoking
a get_evaluator method. For example, the SIDL definition
for the get_evaluator4 method of
IntegralEvaluatorFactoryInterface is showed as follows:

/** Get a 4-center integral evaluator

@param desc Integral set descriptor

@return 4-center integral evaluator */

IntegralEvaluator4Interface get_evaluator4(

in CompositeIntegralDescrInterface desc,

in MolecularInterface bs1,

in MolecularInterface bs2,

in MolecularInterface bs3,

in MolecularInterface bs4);

Using MPQC integral evaluators is expected to be as
straightforward as using GAMESS integral evaluators, as
long as everything is initialized properly. For example, our
current testing is to pass a
GAMESS.GaussianBasisMolecular object to the
MPQC.IntV3EvaluatorFactory component through the
IntegralEvaluatorFactoryInterface provides/uses
connection. If the initialization in the
GAMESS.GaussianBasisMolecular object is correct, then
the MPQC.IntV3EvaluatorFactory component should be
able to return an integral evaluator and do the same
computation as a GAMESS integral evaluator.

The integration steps are as follows:

a) Instantiate a GAMESS.ModelFactory component and a
MPQC.IntV3EvaluatorFactory component in a
CCAFFEINE framework.

b) GAMESS.ModelFactory component reads user options
through CCA parameters and initializes GAMESS common
blocks, memory and parallel layers.

c) Create a GAMESS.GaussianBasisMolecular object and a
CompositeIntegralDescr (implemented by the cca-chem-
generic package) object.

d) Pass the GAMESS.GaussianBasisMolecular and
CompositeIntegralDescr objects to the
MPQC.IntV3EvaluatorFactory component and get the
reference to a MPQC.IntegralEvaluator4 object.

e) Invoke the compute method of the
MPQC.IntegralEvaluator4 object inside a four-level loop
structure that computes integrals over all shell quartets.

f) Finalize and remove all objects and components.

The goal of this experiment is to test interoperability only.
The results of an integral computation in each iteration are
usually used by some other computation. With initial
interoperability established, our future work will turn to
componentizing GAMESS code that utilizes
GAMESS/MPQC/NWChem integral components. The
performance of GAMESS integral components and issues
in the interoperability of GAMESS with MPQC integral
components are discussed in Section 4.

4. Performance Evaluation
In this section we present only the performance of the two-
electron integral computation since this computation takes
significantly more CPU time than the one-electron integral
computation does. We measure the wall-clock time for
calculating all shell quartets of a molecule by using the
GAMESS program, GAMESS wrapper functions,
GAMESS CCA integral components and GAMESS &
MPQC CCA components. First, we examine the
performance overhead incurred by the design of the
wrapper functions. This is done by invoking the
gamess_twoei_compute wrapper function inside the four-
level nested loop structure, and comparing the results with
the time of the same computation by using the original
GAMESS two-electron integral computations. Second, we
examine the performance overhead caused by the
CCAFFEINE framework when running the GAMESS
CCA integral computations. This is done by evaluating the
performance overhead of GAMESS.IntegralEvaluator4
class, which in turn uses the wrapper functions for
calculation. Finally, we present the performance data for
the integration of GAMESS and MPQC.

The TAU performance tools are used for measuring the
performance of two-electron integral computations in our
testing. We insert TAU timers in both component-level
methods and in GAMESS subroutines. The wall-clock time
of looping over all shell quartets is used as the performance
data and the time is measured in seconds.

The platform used for testing is a SMP cluster of 4 nodes,
where each node has two dual-core 2.0GHZ Xeon
"Woodcrest" CPUs and 8GB of RAM. The nodes are
interconnected with both Gigabit Ethernet and DDR
Infiniband. The operating system is Red Hat Enterprise
Linux 4. Since both NWChem and MPQC parallelize the
routines that call the integral computations, instead of
parallelizing the integral computations themselves, we have
decided to show only sequential performance data here. .

Test Cases. Four molecules are used as our test cases.
Table 2 shows the names of the molecules, the basis set,
the number of atoms, the number of shells, the number of
basis functions, and the number of shell quartets. The test
cases are listed in descending order according to the
number of two electron integrals.

The Integral Screening in GAMESS Two-Electron
Integral Computation. Integral screening is a technique
to ignore calculating integrals which are estimated to have
little or no contribution to the final results of the Fock
matrix [10]. GAMESS by default uses integral screening
techniques to screen out small integrals in the two-electron
integral computation. In the design of CCA integral
components, the integral screening has been separated from
the integral computation, and is used as an independent
option. Since the three chemistry packages use different
screening techniques and default thresholds for small
integrals, the number of non-zero two-electron integrals
being calculated by each package is different from each
other. We turn off the integral screening in every package
when conducting interoperability testing to make sure the
number of non-zero integrals computed by every integral
component to be as close as possible.

4.1 Test GAMESS Integral Computations
In GAMESS, a native buffer (in memory), GHONDO, is
allocated for storing 2e-integrals of one shell quartet. The
results of GHONDO are either read and saved to a disk
file, or used immediately, and the values of GHONDO are
reset to zeros and used for storing 2e-integrals for another
shell quartet in the next iteration. However, to
componentize 2e-integral calculations for a shell quartet,
the results should be stored in a buffer passed from a
calling function (or an integral evaluator4). Instead of
using GHONDO for storing the results of computing a

shell quartet, we use the buffer passed to the wrapper
function. The resulting integrals of each shell quartet can
be accessed through the reference to the buffer by the end
of each iteration and no disk I/O is needed for writing the
results to a disk file.

To compare the performance of the original GAMESS
subroutine and the wrapper function, we modified the
original GAMESS code to ignore disk I/O after computing
each shell quartet (to be compatible with our design in the
wrapper function). The second column of Table 3 shows
the performance data for computing 2e-integrals in
GAMESS.

Test GAMESS Wrapper Integral Computation. The
third column of Table 3 shows the performance for 2e-
integral computation using wrapper functions. The
overhead of the 2e-interal computation using the wrapper
functions is about 17% of the 2e-integral computation with
the original GAMESS code. In the original GAMESS code,
statements that are inside the first, second or third-level of
the four-level loop structure, now need to be executed for
each shell quartet, about ()4NO times. If there is an overhead
introduced by each single call to the compute method, the
overall performance overhead can be significant.

Test GAMESS CCA Integral Computation. The goal of
this experiment is to test the performance overhead of the
CCAFFEINE framework. The GAMESS wrapper
functions are used for implementing GAMESS CCA
components. Thus, a buffer is passed from a
GAMESS.IntegralEvaluator4 object to the GAMESS
wrapper functions for storing results of a shell quartet and
the reference to the buffer is returned. The fourth column
of Table 3 shows the running time of the 2e-integral
calculation obtained using GAMESS CCA integral
components. It shows that the performance overhead is
relatively small, since all times are within 10% of the
original running time.

4.2 The Integration of GAMESS & MPQC
Integral computations using CCA components from both
MPQC and GAMESS are conducted through the process
outlined in Section 3.5. In our testing, we produced the
wall-clock time for computing two-electron integrals by
using GAMESS CCA components, and GAMESS &

Table 2. Molecule Basis Set Information

molecule basis set # of
atoms

of
shells

of
basis

functions

of
shell quartets

Ergosterol 6-31G* 73 204 523 2.18625E+08
Darvon 6-31G* 54 158 433 7.88956E+07
Luciferin 6-31G* 26 90 294 8.38656E+06
Nicotine 6-31G* 44 76 208 4.2822E+06

Table 3. Wall-clock Times (sec) for Two-electron Integral
Computations

molecule GAMESS GAMESS
Wrapper Functions

GAMESS CCA
Components

Ergosterol 801.52 921.35 980.16
Darvon 361.47 422.72 445.15
Luciferin 63.39 74.11 77.06
Nicotine 22.93 26.71 28.50

MPQC components. Here we choose the water molecule
with the cc-pVQZ and aug-cc-pVQZ basis sets. Table 4
shows that the discrepancy of the 2e-integral computation
for the water molecule is very small between GAMESS
CCA components and GAMESS & MPQC CCA
components.

5. Issues in Integrating Packages
In the process of developing integral components, several
issues affected our design of components, or delayed the
progress of component development. We discuss these
issues in this section.

5.1 Low-level Interoperability
Ideally if similar functions from different packages are
componentized, complying with the same interface, we
should be able to use these components interchangeably.
However, if components are designed without substantial
modifications to existing applications (e.g., using wrapper
functions), the “plug-and-play” goal may be difficult to
achieve.

The differences in the approaches to develop integral
components provide a good example of the difficulties
faced in interfacing low-level components in a “plug-and-
play” fashion. For the MPQC integral component, the
underlying software architecture is object-oriented and is
more amenable to the encapsulation concepts of component
architectures. For GAMESS, a package with over two
decades of development history and developers scattered
around the world, encapsulation into components may be
error-prone in part because the subroutines to be
encapsulated may be entangled with other subroutines
developed by many scientists over a long period of time.
To solve this problem, we chose to tightly couple the
initialization processes of the original GAMESS program
and the GAMESS CCA architecture, even though, in the
standardized interfaces, it may be possible to use
components from other packages for initialization.

5.2 Issues for Code Efficiency
The integral screening improves the efficiency of integral
computations. In GAMESS, screening is a ‘built-in’
function that is integrated with integral computations and
can be turned on or off by setting a flag in the input file. In
MPQC, screening is not coupled with integral

computations but rather may be performed by the caller of
integral computations.

The interfaces for integral and other quantum chemistry
computations are defined from a chemistry algorithm point
of view. That is, the interfaces for data and methods
performing electronic structure calculations are defined,
but not for the procedures to improve code efficiency, such
as using of screening. On one hand, we want to keep the
interfaces as clean as possible, so they should include only
data and methods that are essential to a computation; on the
other hand, if a technique to improve code efficiency is
widely used by every package, we may want to include this
technique somewhere in the interface. How to seamlessly
integrate via common interfaces computations and their
efficient implementations, is a difficult design choice.

5.3 Version Control and Testing Procedure
Figure 5 shows the package dependence in this project.
Besides three chemistry packages, we also use performance
tools provided by TAU [17] to conduct component level
performance evaluations. All packages, even compilers, are
constantly updated with new versions. Whenever a certain
package is updated, all the other packages may require
rebuilding, and we have to conduct stability and
compatibility testing all over again.

The process of rebuilding packages is time consuming; if
errors occur during stability and compatibility testing,
locating the source of the error is equally time-consuming.
When some bugs are found in a new version of a package,
we may have to roll back to an older stable version to
continue the development process.

With the scope of quantum chemistry computations and the
capabilities provided by the three packages, we expect
more components will be developed. Exploring/developing
a capable tool to minimize efforts in maintaining/testing
packages is essential in a real-size project such as this one.

6. Conclusion
In this paper, we present our experience in developing
CCA components based on a large-scale quantum

Table 4. Wallclock Times for Testing the Water Molecule
with GAMESS and MPQC (sec)

basis set GAMESS CCA
Components

GAMESS & MPQC
CCA Components

cc-pVQZ 3.63 3.65

aug-cc-pVQZ 16.07 15.96

GAMESS MPQC NWChem

TAU
Performance

Tools

Cca-chem-apps

Cca-chem-generic

Fortran 90Fortran 77C++

CCA-Tools

Babel

JavaC Python
Figure 5. The package dependence for the CCA chemistry
project.

chemistry package. The process of componentizing
integral computation is delineated in detail and issues of
interoperability are discussed. This will provide
application scientists a perspective about the problems they
may be facing when componentizing their packages to
explore interoperation with other software. We are
extending our experiments to integrate GAMESS and
NWChem at the fine-grained level and also build a
complete chemistry computation, such as calculating the
energy, by using any two of the three chemistry packages
through the CCA interfaces.

Based on our experience, community-agreed interfaces and
data standards provide only the first step to
componentization of a package; substantial efforts are
needed to improve the usability of components, control
versions of the underlying software, minimize overhead
caused by extra layers of function calling, and standardize
testing procedures to efficiently explore the errors in
coupling many software packages. Componentizing a
large-scale legacy software package is an especially
challenging task. In other words, comprehensive scientific
software engineering is essential in developing components
that are truly shareable between scientific packages.

Acknowledgments
We thank Mike Schmidt from the department of Chemistry
and Ames Laboratory, Iowa State University for the
information on GAMESS and DDI. This work was
supported by a SciDAC grant from the Department of
Energy via the Ames Laboratory and Sandia National
Laboratory.

References
[1] D. E. Bernholdt, B. A. Allan, R. Armstrong, F. Bertrand, K.

Chiu, T. L. Dahlgren, K. Damevski, W.R. Elwasif, T. G. W.
Epperly, M. Govindaraju, D. S. Katz, L. F. Diachin, J. A.
Kohl, M. Krishnan, G. Kumfert, S. Lefantzi, M. J. Lewis, A.
D. Malony, L. C. McInnes, J. Nieplocha, B. Norris, S. G.
Parker, J. Ray, S. Shende, T. L. Windus, and Zhou. S., “A
Component Architecture for High-Performance Scientific
Computing”, international Journal of High Performance
Computing Applications Vol. 20, No. 2, 163-202 (2006)

[2] CCA-Forum, the Common Component Architecture Forum.
http://www.cca-forum.org

[3] Babel, http://www.llnl.gov/CASC/components/babel.html
[4] M. W. Schmidt, K. K. Baldridge, J. A. Boatz, S. T. Elbert,

M. S. Cordon, J.H. Jensen, S. Koseki, N. Matsunaga, K. A.
Nguyen, S. J. Su, T. L. Windus, M. Dupuis, J. A.
Montgomery, “General Atomic and Molecular Electronic
Structure System”, Journal of Computational Chemistry Vol.
14, Issue 11, 1347-1363 (1993)

[5] The Massively Parallel Quantum Chemistry Program
(MPQC), Version 2.3.1, Curtis L. Janssen, Ida B. Nielsen,

Matt L. Leininger, Edward F. Valeev, Edward T. Seidl,
Sandia National Laboratories, Livermore, CA, USA, 2004.

[6] Aprà, E.; Windus, T.L.; Straatsma, T.P.; Bylaska, E.J.; de
Jong, W.; Hirata, S.; Valiev, M.; Hackler, M.; Pollack, L.;
Kowalski, K.; Harrison, R.; Dupuis, M.; Smith, D.M.A;
Nieplocha, J.; Tipparaju V.; Krishnan, M.; Auer, A.A.;
Brown, E.; Cisneros, G.; Fann, G.; Fruchtl, H.; Garza, J.;
Hirao, K.; Kendall, R.; Nichols, J.; Tsemekhman, K.;
Wolinski, K.; Anchell, J.; Bernholdt, D.; Borowski, P.; Clark,
T.; Clerc, D.; Dachsel, H.; Deegan, M.; Dyall, K.; Elwood,
D.; Glendening, E.; Gutowski, M.; Hess, A.; Jaffe, J.;
Johnson, B.; Ju, J.; Kobayashi, R.; Kutteh, R.; Lin, Z.;
Littlefield, R.; Long, X.; Meng, B.; Nakajima, T.; Niu, S.;
Rosing, M.; Sandrone, G.; Stave, M.; Taylor, H.; Thomas,
G.; van Lenthe, J.; Wong, A.; Zhang, Z.; "NWChem, A
Computational Chemistry Package for Parallel Computers,
Version 4.7" (2005), Pacific Northwest National Laboratory,
Richland, Washington 99352-0999, USA.

[7] J. P. Kenny, S. J. Benson, Y. Alexeev, J. Sarich, C. L.
Janssen, L. C. McInnes, M. Krishnan, J. Nieplocha, E. Jurrus,
C. Fahlstrom and T. L. Windus, "Component-Based
Integration of Chemistry and Optimization Software",
Journal of Computational Chemistry, 24(14) 1717-1725
(2004).

[8] Fang Peng, Meng-Shiou Wu, Masha Sosonkina, Ricky A.
Kendall, Michael W. Schmidt, Mark S. Gordon, Coupling
GAMESS via Standardized Interfaces, HPC-
GECO/Compframe, Paris, France, June 19-20 2006

[9] Boyana Norris, Jaideep Ray, Robert C. Armstrong, Lois C.
McInnes, David E. Bernholdt, Wael R. Elwasif, Allen D.
Malony, Sameer Shende: Computational Quality of Service
for Scientific Components. CBSE 2004: 264-271

[10] Frank Jensen, Introduction to computational chemistry, John
Wiley & Sons, ISBN-0471984256

[11] MPQC, The Massively Parallel Quantum Chemistry
Program, http://www.mpqc.org

[12] Joseph P. Kenny, Curtis L. Janssen, Edward F. Valeev, and
Theresa L. Windus,.“Components for Integral Evaluation in
Quantum Chemistry”, Journal of Computational Chemistry,
submitted.

[13] Ryan M. Olson, Michael W. Schmidt, Mark S. Gordon,
Alistair P. Rendell, “Enabling the Efficient Use of SMP
Clusters: The GAMESS/DDI Model”, SC’03, Phoenix,
Arizona, USA, November 15-21, 2003

[14] CCAFFEINE, a CCA Component Framework for Parallel
Computing, http://www.cca-forum.org/ccafe/

[15] Libint library, http://www.chem.vt.edu/chem-
dept/valeev/software/libint/libint.html

[16] C. L. Janssen, J. P. Kenny, I. M. B. Nielsen, M. Krishnan, V.
Gurumoorthi, E. F. Valeev, and T. L. Windus, “Enabling
new capabilities and insights from quantum chemistry by
using component architectures”, Journal of Physics:
Conference Series, 46 220-228 (2006)

[17] S. Shende and A. D. Malony, "The TAU Parallel
Performance System," International Journal of High
Performance Computing Applications, SAGE Publications,
20(2):287-331, Summer 2006

